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Markov chains are fundamental tools used throughout the sciences and engineering; the design and analysis
of Markov Chains has been a focus of theoretical computer science for the last 20 years. A Markov Chain
takes a random walk in a large state space Ω, converging to a target stationary distribution π over Ω. The
number of steps needed for the random walk to have distribution close to π is the mixing time. For the
Markov Chain to be useful, the mixing time should be polynomial in the input to the problem, typically
logarithmic in |Ω|. Such a chain is called rapidly mixing.

I am interested in applying Markov chain techniques to applied problems, and have been working on
two primary problems: the Schelling Segregation Model, a well studied model in economics, and a biased
permutation problem arising from the Move Ahead One list update paradigm in caching. In both cases, we
leverage intuition gained from studying models in statistical physics.

1 Mixing of the Schelling Segregation Model

The Schelling Segregation Model was proposed by Nobel Prize winning economist Thomas Schelling as a
means to understand causes of racial segregation.[9] He empirically showed that a local preference that one’s
neighbors be of the same “type” as oneself can lead to segregation, the global presence of large connected
neighborhoods predominately of one type. We analyze generalizations of this model in the Markov Chain
framework, with the goal of rigorously establishing bounds on the mixing time at various parameters.

More formally, we consider a tiling model on the n x n grid G where there are three tile types, A,B, and
0 for empty. We say that each non-empty tile is influenced by tiles within distance r, and each tile prefers
that influencing tiles be of the same type as itself. Although Schelling proposed using dynamics based on a
binary threshold function to determine if a particular person was “happy” or “unhappy”, we feel that it is
more natural to analyze a geometric bias function, where a person can be more or less happy depending on
the number of similar neighbors. In our model, we are given parameters λ ≥ µ ≥ 1, and the weight π of a
particular board configuration σ is π(σ) = λ#A-A edges + #B-B edges · µ#AB edges. More simply, each matched
A − A or B − B influence edge contributes λ to the weight of the configuration, and each A − B influence
contributes µ. This scheme corresponds to Non-Saturated Ising model on the graph Gr, where each node is
connected to all nodes within distance r on the grid G.

The Markov chain Mr starts at any initial board configuration σ0. It then, for each time t, iteratively
chooses a tile and a color c ∈ {A,B, 0} to potentially replace this tile with. We call this proposed state τ .
Finally, it makes this transition according to the metropolis distribution, that is σt+1 = τ with probability

min(1, π(τ)π(σt)
, and σt+1 = σt otherwise. It is known that for the r = 1 case, there are constants c < d for

which the chain is fast when µ ≤ λ ≤ c, and the chain is slow when λ/µ > d.[5] In our model, we note that
each tile is influenced by O(r2) tiles instead of only the 4 nearest neighbors, and we are led to the following
conjecture.

Conjecture: The Markov Chain Mr is rapidly mixing for all µ < λ ≤ 1 + c/r2 and is slowly mixing for all
λ/µ ≥ 1 + d/r2 for some constants c and d.

1.1 Previous work: The related Ising model of statistical physics has been well studied in the Markov
Chain framework. [7][8]. The case where r = 1, the Non-Saturated Ising model on the grid, was analyzed by
Greenburg and Randall.[5] They show that for constants c < d, the chain is fast for λ < c using a coupling
argument, and that the chain is slow for λ > d by showing that a cut exists in Ω with exponentially small
weight. The first real progress on the Schelling model itself was done very recently by Brandt et al.[3]. Their
analysis provides some of the only rigorous analysis of the model, but only in the one-dimensional setting.

1.2 Our Progress: My advisor, Dana Randall, and I have recently made a great deal of progress
towards resolving our conjecture and its equivalent on related models. In particular, we make the first real
progress towards the analysis of the 2-dimensional Schelling model. First, we extend the results of Greenburg
and Randall, using a new fault line argument to exhibit an exponentially small cut in the state space. The
following outlines our intended approach.
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Claim: The Markov Chain Mr is rapidly mixing for all µ ≤ λ ≤ 1 + c/r2 and is slowly mixing for all
λ/µ ≥ 1 + d log r/r2 for some constants c and d.

We define a fault component to be a maximally connected set of edges between neighboring nonmatched
tiles or between empty tiles. A fault line is a fault component that spans either from the top to the bottom
of the grid, or from the left to the right. Let Ω be the set of nxn board configurations, and ΩF ⊂ Ω be the
subset that contains a fault line. It is known that ΩF forms a cut in the state space Ω, and our goal is to
show that this set has exponentially small weight. The existence of a small cut in Ω places a bound on the
conductance Φ, which is a well known measure of the mixing time.[6]

We introduce the concept of an extended fault line, which is a maximal collection of fault components
beginning with a fault line that iteratively adds nearby fault components within distance r. We believe that
we can create a mapping f : ΩF → Ω that reverses all the colors in fault components of the input σ to obtain
a configuration τ with exponentially more weight. We can also bound the number of preimages of any τ ∈ Ω
by encoding the extended fault line in each mapping as a depth-first search path. This can be used to show
that this cut will be exponentially small when λ/µ > 1 + d log r

r2 for some d. Finally, we believe that we can
remove the log r term by careful pruning of fault components that are expensive to encode.

1.3 Exponentially Decaying Influence Model: We also show similar progress for the variant of
the Schelling model where the influence between two tiles decays exponentially as a function of the distance
between them. This can be viewed as a more realistic model for influence from distant neighbors.

We introduce a parameter α < 1, and let the influence between two tiles at distance k to be αk−1. As

before, if two tiles match, they contribute λα
k−1

to the weight, and if they mis-match, they contribute µα
k−1

.
The weight of a board configuration is again the product of all influences. An important quantity is the sum
S of all influences on a particular tile, which is bounded by 4

(1−α)2 . We make the following conjecture, based

on intuition gained from the analysis of Mr.

Conjecture: The Markov Chain Mr is rapidly mixing for all µ < λ ≤ 1 + c/S and is slowly mixing for all
λ/µ ≥ 1 + d/S for some constants c and d.

We have also recently made similar progress to resolving this conjecture.

Claim: The Markov Chain Mα is rapidly mixing for all µ ≤ λ ≤ 1 + c/S and is slowly mixing for all
λ/µ ≥ 1 + d log(− logα)/S for some constants c and d.

Our main argument chooses r = f(α) and extends the analysis of Mr to obtain these bounds. In this case,
we believe that we can remove the log(− logα) term by only including fault components that have large gain
relative to the cost to encode them.

2 The Mixing Time of Biased Permutations

A very different setting I am currently considering is the mixing of various Markov Chains in the context
of biased permutations. I considered the following Markov chain on the space Ω of permutations of {1, . . . , n}.

Given pi,j for i, j ∈ {1, . . . , n} for i 6= j such that for i < j, pi,j ≥ 1
2 and pi,j + pj,i = 1, the Markov chain

MSWP starts at any initial permutation σ, then iteratively chooses a position i ∈ 1, . . . , n− 1 uniformly, and
swaps the elements σ(i), σ(i+ 1) with probability pσ(i+1),σ(i); else it does nothing. This very simple Markov
chain has defied analysis for many years, and was only known to mix rapidly for constant pi,j = c[1] or the
case where pi,j = 1/2 or 1 [4]. Ten years ago, Jim Fill first studied this model under a convexity condition
that requires pi,j ≤ pi,j+1 for 1 ≤ i < j ≤ n− 1 and pi,j ≤ pi−1,j for 2 ≤ i < j ≤ n.

Conjecture: MSWP is rapidly mixing with the convexity condition.

We’ve recently done exiting work to prove that the chain is rapidly mixing for two broad classes of pi,j ,
and disproved the conjecture that MSWP is rapidly mixing when all pi,j ≥ 1/2 for i < j. This work was
recently submitted for publication[2]. I hope to extend these results to the more general setting assuming
only the convexity condition on the pi,j . One strong approach under consideration involves showing that
the conductance of any subset of Ω cannot be too small by iteratively modifying one value of pi,j at a time,
preserving convexity at each step.
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