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1 Introduction

The bin packing problem has been the corner stone of approximation algorithms and has been ex-
tensively studied [GJ81, Lod99] starting from the classical work of Garey and Johnson [GJ79]. The
problem is also important from a practical standpoint and finds applications in scheduling and rout-
ing. In this proposal we will present variant of this problem that is motivated by its applications in
palletizing problems.

Concretely, we will study the 3D bin-packing problem where we are given a set of rectangular
items A1, A2 · · ·An ∈ (0, 1]3 specified by their depth, width and height and the goal is to pack these
items into a minimum number of unit cube bins. Apart from the packing constraints we would also
like to incorporate additional considerations such as stability, center of gravity, elasticity, and shapes
of items.

2 Problem Statement and Prior Work

3D Bin Packing: In the 3-Dimensional (geometric) Bin Packing problem, we are given a set of
3-Dimensional rectangular items whose size along each dimension is bounded by one, and the goal is
to pack these items into a minimum number of unit cube bins. We will consider orthogonal packing
without rotation i.e. the items are not allowed to be rotated and must be packed parallel to the edges
of the box. In any feasible solution, items are not allowed to overlap.

In this proposal we also intend to study solutions to the 3-D Bin Packing problem, which are
realizable for example while stacking items for shipping or storage. We will focus on three aspects of
this problem:

1. Gravity: We wish to ensure that our solution is stable under gravity i.e. there are no over-
hanging or floating boxes. Almost all known algorithms for bin packing use stage packing or
level-oriented packing [Cap02] where items are first packed into shelves that are then packed
into bins. In such solutions the bottom of one item in a shelf might not be touching the top of
the item just below in the lower shelf and may lead to unstable solutions under gravity.

2. Unpacking Sequence: Sometimes we need to consider the unloading sequence while doing the
bin packing. For example, when UPS fills up their delivery trucks they have to pack items in
minimum number of trucks in such a way that they can unload it in the order the delivery places
arrive. In other words, we are given with a total order and set of items to be packed, we need
to pack them into minimum number of bins so that if item i appears before item j in the total
order, then item j is placed after placing item i. This problem is an easier version of online bin
packing as we already know all items that are needed to be packed.

3. Stability: We also intend to study stable palletization, where stability is measured by the
amount of interlockings (crossing edges between adjacent levels).

The above problems are NP-hard and we will be interested in polynomial time approximation
algorithms for the same. Often for bin packing problems it is possible to construct small patho-
logical instances where no algorithm attains a reasonable approximation ratio and thus we will use
the notion of asymptotic approximation ratio (AAR, denoted by R∞A ) as a measure of our perfor-
mance. Given a poly-time algorithm A, the ratio R∞A is given by R∞A = limn→∞ sup Rn

A , where
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Rn
A = max{A(I)/OPT (I)|OPT (I) = n} and I ranges over set of all problem instances. A problem is

said to admit an Asymptotic Polynomial Time Approximation Schemes (APTAS) if for every ε > 0,
there is a poly-time algorithm with asymptotic approximation ratio (1 + ε).

Prior Work: For 1-D Bin Packing an APTAS is known due to Fernandez de la Vega and Lueker
[dlVL81] and Karmarkar and Karp [KK82]. However, Bansal et. al. [BCKS06] showed 2-D Bin Packing
in general does not admit an APTAS unless P = NP . Caprara in his break-through paper [Cap02]
gave an algorithm for 2-D Bin packing attaining an AAR of ≈ 1.69 . This was later improved by
Bansal et al. [BCS09] to (ln 1.69 + 1) ≈ 1.52 for both the cases with and without rotation. Online
version of bin packing is also well-studied. The present best online 1-D, 2-D and 3-D bin packing
algorithms have AAR of 1.589[Sei02], 2.55 and 4.31[HCT+11] respectively.

A closely related problem is the Strip Packing where we are given 3-D rectangular items each of
whose dimensions is at most one and they need to be packed into a single 3-D box of unit depth, unit
width and unlimited height so as to minimize the height of the packing. The two dimensional variant
of this problem is known as the Cutting Stock Problem and is defined analogously. Recently APTAS
are given for 2-D Strip Packing without rotations [KR00] and with rotations in [JvS05]. 3-D Strip
Packing is a common generalization of both the 2-D Bin Packing problem(when each item has height
exactly one) and the 2-D Strip Packing Problem(when each item has width exactly one) and the best
known algorithm is by Bansal et al. [BHI+07] with an AAR of 1.69.

3 Solution Proposal or Approach

We propose two approaches to address this problem.
Subset Oblivious Packing: A ρ-approximation algorithm is subset-oblivious if it not only produces
a solution with value at most ρ opt(I) on instance I, but also, given a “random” subset S ⊆ I where
each element in S occurs with probability 1/k, the value of the solution produced by the algorithm on
S is bounded by approximately ρ opt(I)/k. This notion was introduced by Bansal et al. in [BCS09]
where they showed that any subset oblivious ρ-approximation algorithm for a d-dimensional bin pack-
ing problem can be converted to another randomized algorithm with approximation guarantee close
to ln ρ+ 1. They found a subset oblivious algorithm for 2-D Bin packing. However they were not able
to find a subset-oblivious algorithm for 3-D Bin Packing. The key bottleneck in extending this result
to 3D is to find a good approximation algorithm to solve the following LP relaxation of a related set
cover problem, in which a set I of items has to be covered by configurations from the collection C ⊆ 2I ,
where each configuration C ∈ C corresponds to a set of items that can be packed into a bin:

min{
∑
C∈C

xC :
∑
C3i

xC ≥ 1(i ∈ I), xC ∈ {0, 1}(C ∈ C)} .

The existence of a poly-time algorithm for the above LP relaxation with AAR poly(d) would lead to
a poly-time algorithm with AAR poly(d) for d-D Bin Packing, a significant improvement over current
guarantees, which are exponential in d.
Strip Packing: One can easily find a (1.69×2+ ε) ≈ (3.38+ ε)- asymptotic approximation algorithm
for the 3-D Bin packing using the 3-D Strip Packing algorithm in [BHI+07] by cutting the 3-D strip
into unit cubes by planes parallel to base and pack the cut items for each plane in a separate bin.
Tall not sliced property of an algorithm ensures any item that is cut by a plane parallel to the base
has height at most ε. We will try to show that tall not sliced property holds for above algorithm for
3-D Bin Packing when items are Harmonic rounded i.e. each dimension with value greater than some
constant ε is of the form 1/m for some positive integer m. This will give a (1.692 + ε) ≈ (2.85 + ε)
algorithm. We believe the harmonic rounding technique introduced in [LL85] and the analysis of the
Next Fit Decreasing Height algorithms[JGJT80] might be useful in this context.

Due to the practical nature of the problems addressed in this proposal we would also be implement-
ing our solutions using commercially available 3D modeling software. Our preliminary experiments
indicate that several simple algorithms perform quite well on real-world instances and through this
project we also aim to build sufficient theoretical understanding to explain this behavior.
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