ARC Colloquium: Moses Charikar (Stanford)

Algorithms & Randomness Center (ARC)

Moses Charikar (Stanford)

Monday, September 9, 2019

Klaus 1116 East- 11:00 am


Title:  Approximating Profile Maximum Likelihood Efficiently

Abstract:  Symmetric properties of distributions arise in multiple settings. For each of these, separate estimators and analysis techniques have been developed. Recently, Orlitsky et al showed that a single estimator that maximizes profile maximum likelihood (PML) is sample competitive for all symmetric properties. Further, they showed that even a 2^{n^{1-delta}}-approximate maximizer of the PML objective can serve as such a universal plug-in estimator. (Here n is the size of the sample). Unfortunately, no polynomial time computable PML estimator with such an approximation guarantee was known. We provide the first such estimator and show how to compute it in time nearly linear in n.

Joint work with Kiran Shiragur and Aaron Sidford.


Speaker's Webpage

Videos of recent talks are available at:

Click here to subscribe to the seminar email list:

Event Details


  • Monday, September 9, 2019
    12:00 pm - 1:00 pm